بررسی مکانیسم عصب شناسی ورزش در دوران سالمندی: مرور روایتی

نوع مقاله : مطالعات مروری

نویسنده

دانش آموخته گروه علوم رفتاری و شناختی ورزشی، دانشکده علوم ورزشی و تندرستی، دانشگاه تهران، تهران، ایران.

چکیده

مقدمه: سن بالا به عنوان اصلی‌ترین عامل خطر برای بیشتر بیماری‌های نورودژنراتیو، از جمله بیماری آلزایمر و بیماری پارکینسون، به ویژه در جمعیت سالمندان شناخته شده است. ورزش منظم تأثیرات عمیق و گسترده‌ای بر عملکرد مغز دارد که از طریق مکانیسم‌های عصب‌شناسی متعدد اعمال می‌شود. از مهم‌ترین این مکانیسم‌ها می‌توان به افزایش جریان خون مغزی، تحریک تولید فاکتورهای نوروتروفیک مانند و فعال‌سازی نوروژنز در نواحی کلیدی همچون هیپوکامپ اشاره کرد. این فرآیندها سبب تقویت حافظه، یادگیری، و بهبود خلق‌وخو می‌شوند. همچنین، ورزش باعث تنظیم انتقال‌دهنده‌های عصبی نظیر سروتونین، دوپامین و نوراپی‌نفرین می‌شود که نقش مهمی در کاهش علائم اضطراب، افسردگی و افزایش تمرکز دارند. علاوه بر این، ورزش با کاهش التهاب و استرس اکسیداتیو، از نورون‌ها در برابر آسیب محافظت کرده و روند پیری مغز را کند می‌کند. مطالعات تصویربرداری نیز نشان می‌دهند که فعالیت بدنی منجر به بهبود ارتباط بین شبکه‌های عصبی و تقویت عملکرد قشر پیش‌پیشانی می‌شود.
نتیجه گیری:  ورزش به‌عنوان یک مداخله غیر دارویی مؤثر، نقشی کلیدی در ارتقای سلامت عصبی و پیشگیری از بیماری‌های نورولوژیک ایفا می‌کند.

کلیدواژه‌ها

موضوعات


Extended Abstract

Introduction: The global senior population is rising; by 2030, one in six individuals will be 60 years or older, as reported by the World Health Organization (WHO). This tendency has resulted in heightened focus in scientific study around aging and the quality of life for the elderly. Advanced age is acknowledged as the primary risk factor for the majority of neurological disorders, including Alzheimer's and Parkinson's diseases, particularly among the senior population. Consequently, elderly individuals ought to implement preventive measures and adhere to a healthful lifestyle. Multiple risk factors, including as smoking, physical inactivity, obesity, and hypertension, may facilitate the onset of dementia and associated disorders. Aging induces alterations in the brain, characterized by reduced brain volume, diminished cortical density, decreased white matter, lowered metabolic activity and mitochondrial function, as well as modifications in neurotransmitter levels. The aging process modifies learning and memory due to a reduction in brain capacity, accompanied by the atrophy and alteration of the frontal lobe and hippocampus. The cerebral cortex's thickness diminishes with age, potentially resulting in a reduction in information processing speed. The reduction of neurotransmitters including dopamine, serotonin, and norepinephrine in advanced age impacts mood, memory, and cognitive abilities. The human brain necessitates a substantial amount of metabolic energy for optimal functioning. Notwithstanding its diminutive size, the brain utilizes approximately 20% of the body's overall oxygen supply. Due to their restricted glycolytic capability, neurons are significantly reliant on mitochondrial energy synthesis. Approximately 90% of adenosine triphosphate (ATP) synthesis in the brain transpires within mitochondria. This energy is crucial for various cellular functions, including the synthesis, secretion, and recycling of neurotransmitters, as well as the maintenance of neuronal membrane potential. In addition to energy metabolism, mitochondria are crucial for mechanisms associated with cell survival and death, including the maintenance of cellular oxidative equilibrium, the regulation of apoptotic pathways, and the facilitation of synaptic plasticity. Mitochondria participate in intracellular calcium homeostasis. For instance, mitochondria in synaptic terminals regulate intracellular calcium levels by storing or releasing excess amounts. Mitochondrial malfunction in synaptic mitochondria disrupts neurotransmission, resulting in cellular alterations that can vary from slight modifications in neuronal function to neuronal death and degeneration. Mitochondria are significant generators of reactive oxygen species (ROS) and are also susceptible to ROS-induced toxicity. Epidemiological studies indicate a substantial correlation between physical activity and a diminished risk of Alzheimer’s disease and dementia. Engagement in physical activity correlates with a substantial risk decrease of 45% for Alzheimer's disease and 28% for dementia. This illustrates the capacity of lifestyle modifications, especially physical activity, to enhance neuroprotection. Evidence unequivocally demonstrates that exercise confers numerous advantages for cerebral health and functionality. Until recently, it was believed that the adult brain lacked regenerative capabilities; however, ongoing discussions persist. Notably, the hippocampus, a critical region for learning and memory and particularly susceptible to Alzheimer’s disease, continues to produce new neurons in adults into their 90s. Exercise is one of the rare stimuli capable of inducing neurogenesis in the adult brain. Exercise stimulates neurogenesis, enhances hippocampus volume and blood flow, and augments memory in both mice and humans. Even minimal-intensity exercise, such as walking, enhances hippocampus activity linked to memory enhancement in healthy individuals. Exercise also mitigates the pace of cognitive decline over time in both healthy persons and those with various neurological diseases. Likewise, physical activity diminishes the incidence of dementia and can impede its advancement. The noted health advantages are partially ascribed to exercise's influence on the expression or augmentation of neurotrophins, essential chemicals that enhance neuronal architecture in the brain. Elevated concentrations of neurotrophins, especially brain-derived neurotrophic factor (BDNF), are associated with enhanced neuronal architecture. Brain-derived neurotrophic factor (BDNF) is a protein belonging to the neurotrophin family, located in the brain and peripheral organs, such as skeletal muscle. Neurons within the central nervous system are the primary makers of BDNF, which is essential for memory and learning functions. It interacts with the tyrosine kinase B (TrkB) receptor and facilitates processes like neurogenesis, axonal development, and synaptogenesis. Scientific data indicates that the brain is the primary generator of this component in circulation both at rest and during exercise, with its localized effects within the brain. It also affects physiological systems including glucose metabolism and lipid oxidation. Research indicates that endurance exercise enhances BDNF expression, leading to an increase in dendritic spine density and dendritic branching. These structural alterations have been associated with beneficial enhancements in memory and learning.

Conclusion: Regular exercise in old age is known to be an effective factor in maintaining and promoting brain health. Extensive studies have shown that regular physical activity can improve cognitive functions such as memory, attention, and information processing speed. These improvements are especially significant in older adults who are at risk of cognitive decline or dementia. From a neurological mechanism perspective, exercise increases the brain's neuroplasticity; that is, the brain's ability to create and rebuild new neural connections, which is the basis for learning and memory.

 

Footnotes

Funding: This article has not received any grants.

Authors’ contribution: F.R. participated in the design of the study and manuscript writing.

Conflict of interest: There is no conflict of interest.

  1. Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, et al. Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol [Internet]. 2019;15(10):565–81. Available from: http://dx.doi.org/10.1038/s41582-019-0244-7
  2. Umeda T, Ramser EM, Yamashita M, Nakajima K, Mori H, Silverman MA, et al. Intracellular amyloid β oligomers impair organelle transport and induce dendritic spine loss in primary neurons. Acta Neuropathol Commun [Internet]. 2015;3:51. Available from: http://dx.doi.org/10.1186/s40478-015-0230-2
  3. Lipowski M, Zaleski Z. Inventory of Physical Activity Objectives – a new method of measuring motives for physical activity and sport. Heal Psychol Rep. 2015;3(1):47–58.
  4. Törpel A, Herold F, Hamacher D, Müller NG, Schega L. Strengthening the brain—is resistance training with blood flow restriction an effective strategy for cognitive improvement? J Clin Med. 2018;7(10).
  5. Jankovic J, Tan EK. Parkinson’s disease: Etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry [Internet]. 2020;91(8):795–808. Available from: 10.1136/jnnp-2019-322338
  6. Garritson JD, Boudina S. The Effects of Exercise on White and Brown Adipose Tissue Cellularity, Metabolic Activity and Remodeling. Front Physiol [Internet]. 2021;12(November):1–7. Available from: 10.3389/fphys.2021.772894
  7. Weston KS, Wisløff U, Coombes JS. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: A systematic review and meta-analysis. Br J Sports Med [Internet]. 2014;48(16):1227–34. Available from: 10.1136/bjsports-2013-092576
  8. Norton S, Matthews FE, Barnes DE, Yaffe K, Brayne C. Potential for primary prevention of Alzheimer’s disease: An analysis of population-based data. Lancet Neurol [Internet]. 2014;13(8):788–94. Available from: 10.1016/S1474-4422(14)70136-X
  9. Gage FH. Adult neurogenesis in mammals Neurogenesis in adulthood has implications for sense of self, memory, and disease. Science (80- ) [Internet]. 2019;364(6443):827–8. Available from: 10.1126/science.aav6885
  10. Heger I, Deckers K, Van Boxtel M, De Vugt M, Hajema K, Verhey F, et al. Dementia awareness and risk perception in middle-aged and older individuals: Baseline results of the MijnBreincoach survey on the association between lifestyle and brain health. BMC Public Health [Internet]. 2019;19(1):1–9. Available from: 10.1186/s12889-019-7010-z
  11. Dzyubenko E, Hermann DM. Role of glia and extracellular matrix in controlling neuroplasticity in the central nervous system. Semin Immunopathol [Internet]. 2023;45(3):377–87. Available from: https://doi.org/10.1007/s00281-023-00989-1
  12. Llorens‐Martin M. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in Alzheimer’s disease patients. Alzheimer’s Dement [Internet]. 2020;16(S3):47288. Available from: 10.1002/alz.047288
  13. Karssemeijer EGA (Esther., Aaronson JA (Justine., Bossers WJ (Willem., Smits T (Tara), Olde Rikkert MGM (Marcel., Kessels RPC (Roy. Positive effects of combined cognitive and physical exercise training on cognitive function in older adults with mild cognitive impairment or dementia: A meta-analysis. Ageing Res Rev [Internet]. 2017;40:75–83. Available from: http://dx.doi.org/10.1016/j.arr.2017.09.003
  14. Suwabe K, Byun K, Hyodo K, Reagh ZM, Roberts JM, Matsushita A, et al. Rapid Stimulation of Human Dentate Gyrus Function with Acute Mild Exercise. Proc Natl Acad Sci U S A. 2018;115(41):10487–92.
  15. Aguspa Dita DA, Paramita N, Kodariah R, Kartinah NT. Environmental Enrichment and Aerobic Exercise Enhances Spatial Memory and Synaptophysin Expression in Rats. Indones Biomed J. 2020;12(1):8–14.
  16. Santos-Lozano A, Pareja-Galeano H, Sanchis-Gomar F, Quindós-Rubial M, Fiuza-Luces C, Cristi-Montero C, et al. Physical Activity and Alzheimer Disease: A Protective Association. Mayo Clin Proc [Internet]. 2016;91(8):999–1020. Available from: http://dx.doi.org/10.1016/j.mayocp.2016.04.024
  17. Wang H yan, Ahima RS, Craft S, Gandy S, Buettner C. Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat Publ Gr [Internet]. 2018; Available from: http://dx.doi.org/10.1038/nrneurol.2017.185
  18. Cefis M, Chaney R, Wirtz J, Méloux A, Quirié A, Leger C, et al. Molecular mechanisms underlying physical exercise-induced brain BDNF overproduction. Front Mol Neurosci. 2023;16(October):1–18.
  19. Fernandes J, Arida RM, Gomez-Pinilla F. Physical exercise as an epigenetic modulator of brain plasticity and cognition. Neurosci Biobehav Rev [Internet]. 2017;80:443–56. Available from: http://dx.doi.org/10.1016/j.neubiorev.2017.06.012
  20. Radfar F, Shahbazi M, Tahmasebi Boroujeni S, Arab Ameri E, Farahmandfar M. Moderate aerobic training enhances the effectiveness of insulin therapy through hypothalamic IGF1 signaling in rat model of Alzheimer’s disease. Sci Rep [Internet]. 2024;14(1):1–14. Available from: https://doi.org/10.1038/s41598-024-66637-2
  21. Larijani SF, Hassanzadeh G, Zahmatkesh M, Radfar F. Intranasal insulin intake and exercise improve memory function in amyloid- β induced Alzheimer ’ s-like disease in rats : Involvement of hippocampal BDNF- TrkB receptor. Brain Behav Res. 2023;38:1–15.
  22. Lee THY, Yau SY. From obesity to hippocampal neurodegeneration: Pathogenesis and non-pharmacological interventions. Int J Mol Sci. 2020;22(1):1–33.
  23. Bonanni R, Cariati I, Tarantino U, D’arcangelo G, Tancredi V. Physical Exercise and Health: A Focus on Its Protective Role in Neurodegenerative Diseases. J Funct Morphol Kinesiol. 2022;7(2).
  24. Meng Q, Yin H, Wang S, Shang B, Meng X, Yan M, et al. The effect of combined cognitive intervention and physical exercise on cognitive function in older adults with mild cognitive impairment: a meta-analysis of randomized controlled trials. Aging Clin Exp Res [Internet]. 2022;34(2):261–76. Available from: https://doi.org/10.1007/s40520-021-01877-0
  25. Buzdagli Y, Ozan M, Baygutalp N, Oget F, Karayigit R, Yuce N, et al. The effect of high-intensity intermittent and moderate-intensity continuous exercises on neurobiological markers and cognitive performance. BMC Sports Sci Med Rehabil [Internet]. 2024;16(1):1–12. Available from: https://doi.org/10.1186/s13102-024-00831-7
  26. Raefsky SM, Mattson MP. Adaptive responses of neuronal mitochondria to bioenergetic challenges: Roles in neuroplasticity and disease resistance. Free Radic Biol Med [Internet]. 2017;102:203–16. Available from: http://dx.doi.org/10.1016/j.freeradbiomed.2016.11.045
  27. Sobral-Monteiro-Junior R, Maillot P, Gatica-Rojas V, Ávila WRM, de Paula AMB, Guimarães ALS, et al. Is the “lactormone” a key-factor for exercise-related neuroplasticity? A hypothesis based on an alternative lactate neurobiological pathway. Med Hypotheses [Internet]. 2019;123:63–6. Available from: https://doi.org/10.1016/j.mehy.2018.12.013
  28. Kim JH, Kim DY. Aquarobic exercises improve the serum blood irisin and brain-derived neurotrophic factor levels in elderly women. Exp Gerontol [Internet]. 2018;104(December 2017):60–5. Available from: https://doi.org/10.1016/j.exger.2018.01.024
  29. Loskutova N, Honea RA, Brooks WM, Burns JM. Reduced limbic and hypothalamic volumes correlate with bone density in early Alzheimer’s disease. J Alzheimer’s Dis. 2010;20(1):313–22.
  30. Zhou Y, Wang X, Liu Y, Gu Y, Gu R, Zhang G, et al. Mechanisms of abnormal adult hippocampal neurogenesis in Alzheimer’s disease. Front Neurosci. 2023;17(February):1–12.
  31. Vergallo A, Giampietri L, Baldacci F, Volpi L, Chico L, Pagni C, et al. Oxidative Stress Assessment in Alzheimer’s Disease: A Clinic Setting Study. Am J Alzheimers Dis Other Demen. 2018;33(1):35–41.
  32. Mallard AR, Spathis JG, Coombes JS. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and exercise. Free Radic Biol Med [Internet]. 2020;160(June):471–9. Available from: https://doi.org/10.1016/j.freeradbiomed.2020.08.024
  33. Di Domenico F, Pupo G, Giraldo E, Badìa MC, Monllor P, Lloret A, et al. Oxidative signature of cerebrospinal fluid from mild cognitive impairment and Alzheimer disease patients. Free Radic Biol Med. 2016;91:1–9.
  34. Powers SK, Goldstein E, Schrager M, Ji LL. Exercise Training and Skeletal Muscle Antioxidant Enzymes: An Update. Antioxidants. 2023;12(1):2–14.
  35. Cordeiro LMS, Rabelo PCR, Moraes MM, Teixeira-Coelho F, Coimbra CC, Wanner SP, et al. Physical exercise-induced fatigue: The role of serotonergic and dopaminergic systems. Brazilian J Med Biol Res. 2017;50(12).
  36. Campbell IL. Transgenic mice and cytokine actions in the brain: Bridging the gap between structural and functional neuropathology. Brain Res Rev. 1998;26(2–3):327–36.
  37. González R, Karen B, Denisse M, Hermann V, Foncea Z, Nosaka K, et al. Changes in oxidative stress , inflammation and muscle damage markers following eccentric versus concentric cycling in older adults. Eur J Appl Physiol [Internet]. 2019;(0123456789). Available from: https://doi.org/10.1007/s00421-019-04213-7
  38. Hu S, Li X, Yang L. Effects of physical activity in child and adolescent depression and anxiety: role of inflammatory cytokines and stress-related peptide hormones. Front Neurosci. 2023;17(August):1–10.
  39. Luine V. Sex differences in chronic stress effects on memory in rats. Stress. 2002;5(3):205–16.
  40. Medhat E, Rashed L, Abdelgwad M, Aboulhoda BE, Khalifa MM. Exercise enhances the effectiveness of vitamin D therapy in rats with Alzheimer ’ s disease : emphasis on oxidative stress and inflammation. 2020;111–20.
  41. Nakajima S, Ohsawa I, Ohta S, Ohno M, Mikami T. Regular voluntary exercise cures stress-induced impairment of cognitive function and cell proliferation accompanied by increases in cerebral IGF-1 and GST activity in mice. Behav Brain Res [Internet]. 2010;211(2):178–84. Available from: http://dx.doi.org/10.1016/j.bbr.2010.03.028
  42. Petersen MC, Vatner DF, Shulman GI. Regulation of hepatic glucose metabolism in health and disease. Nat Rev Endocrinol [Internet]. 2017;13(10):572–87. Available from: http://dx.doi.org/10.1038/nrendo.2017.80
  43. Spinelli M, Fusco S, Grassi C. Brain insulin resistance impairs hippocampal plasticity [Internet]. 1st ed. Vol. 114, Vitamins and Hormones. Elsevier Inc.; 2020. 281–306 p. Available from: http://dx.doi.org/10.1016/bs.vh.2020.04.005
  44. Pan X, Kaminga AC, Wen, 41- Ando S, Fujimoto T, Sudo M, Watanuki S, Hiraoka K, Takeda K et alShi W, Wu X, Acheampong K, Liu A. The neuromodulatory role of dopamine in improved reaction time by acute cardiovascular exercise. J Physiol. 2024;602(3):461–84.
  45. Maddock RJ, Casazza GA, Fernandez DH, Maddock MI. Acute modulation of cortical glutamate and GABA content by physical activity. J Neurosci. 2016;36(8):2449–57.
  46. Ritchie C, Smailagic N, Noel-Storr AH, Ukoumunne O, Ladds EC, Martin S. CSF tau and the CSF tau/ABeta ratio for the diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI). Vol. 2017, Cochrane Database of Systematic Reviews. 2017. 86 p.
  47. Stein AM, da Silva TMV, Coelho FG de M, Rueda AV, Camarini R, Galduróz RFS. Acute exercise increases circulating IGF-1 in Alzheimer’s disease patients, but not in older adults without dementia. Behav Brain Res [Internet]. 2021;396(March 2020). Available from: https://doi.10.1016/j.bbr.2020.112903
  48. Birks J, Harvey R. Donepezil for dementia due to Alzheimer ’ s disease. Cochrane Database of Systematic Reviews. 2018. 241 p.
  49. Välimäki T, Koivisto A, Kärkkäinen V, Selander T, Hongisto K, Rusanen M. Pet ownership supports quality of life in home-dwelling people with Alzheimer’s disease. Int J Geriatr Psychiatry [Internet]. 2022;37(4):1–7. Available from: https://doi.10.1002/gps.5698
  50. Zong B, Yu F, Zhang X, Zhao W, Sun P, Li S, et al. Understanding How Physical Exercise Improves Alzheimer’s Disease: Cholinergic and Monoaminergic Systems. Front Aging Neurosci [Internet]. 2022;14(May):1–25. Available from: https://doi.10.3389/fnagi.2022.869507
  51. Moreno-Jiménez EP, Flor-García M, Terreros-Roncal J, Rábano A, Cafini F, Pallas-Bazarra N, et al. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat Med. 2019;25(4):554–60.
  52. Berdugo-Vega G, Lee CC, Garthe A, Kempermann G, Calegari F. Adult-born neurons promote cognitive flexibility by improving memory precision and indexing. Hippocampus. 2021;31(10):1068–79.
  • تاریخ دریافت: 06 فروردین 1404
  • تاریخ بازنگری: 04 خرداد 1404
  • تاریخ پذیرش: 12 خرداد 1404
  • تاریخ انتشار: 25 خرداد 1404