نقش فعالیت ورزشی بر عملکرد عصبی-عضلانی در سالمندان مبتلا به مالتیپل اسکلروزیس: مرور پیشینه و جهت گیری های پژوهشی

نوع مقاله : مطالعات مروری

نویسندگان

1 گروه فیزیولوژی ورزشی، دانشکده علوم ورزشی و تندرستی، دانشگاه تهران، تهران، ایران

2 دکتری، گروه فیزیولوژی ورزشی، دانشکده علوم ورزشی و تندرستی، دانشگاه تهران، تهران، ایران

3 گروه فیزیولوژی ورزشی، دانشکده علوم ورزشی و تندرستی، دانشگاه تهران، تهران، ایران.

چکیده

مالتیپل اسکلروزیس (MS) نوعی بیماری خود ایمنی سیستم عصبی مرکزی است. این بیماری به طور معمول در بازه سنی ۲۰ تا ۵۰ سال تشخیص داده می‌شود. داده‌های مربوط به سیر طبیعی بیماری اِم اِس حاکی از آن است که جمعیت سالمندان مبتلا به این بیماری در حال افزایش است، به طوری که حدود ۳۰ درصد از افراد مبتلا به MS، اکنون در رده سالمندان طبقه‌بندی می‌شوند.عملکرد عصبی-عضلانی در سالمندان مبتلا به اِم اِس، به طور قابل توجهی تحت تأثیر ترکیبی از اثرات پیشرفت بیماری، کاهش عضلانی-اسکلتی مرتبط با افزایش سن و کم‌تحرکی جسمانی، تضعیف شده است.
تمرینات ورزشی، به‌ویژه زمانی که به طور مناسب طراحی و تحت نظارت باشند، یک مداخله غیردارویی قدرتمند برای کاهش این اختلالات محسوب می‌شوند. در مجموع، شواهد موجود به شدت از ادغام رژیم‌های ورزشی هوازی، قدرتی و به ویژه ترکیبی در راهبردهای جامع توانبخشی برای سالمندان مبتلا به MS حمایت می‌کند.
تحقیقات آینده باید بر اصلاح شدت، تناوب و پیشرفت چنین برنامه‌هایی متمرکز شود و همچنین اثرات بلندمدت آن‌ها بر پیامدهای عملکردی، سلامت شناختی و پیشرفت بیماری در این جمعیت در حال گسترش را مورد بررسی قرار دهد.

کلیدواژه‌ها

موضوعات


Background:
Multiple Sclerosis (MS) is a chronic autoimmune disease of the central nervous system, typically diagnosed between the ages of 20 and 50. However, demographic and clinical trends reveal a rising prevalence of older adults living with MS, with estimates suggesting that approximately 30% of people with MS are now over the age of 60. In this aging population, neuromuscular function is substantially compromised due to a synergistic effect of disease progression, age-related musculoskeletal decline, and reduced physical activity. Consequently, exercise-based interventions have gained attention as non-pharmacological strategies to mitigate these deficits and promote functional independence.

Objective:
This review summarizes the effects and underlying mechanisms of aerobic, resistance, and combined training on neuromuscular function in older adults with MS. It further highlights current gaps in the literature and outlines directions for future research and clinical implementation.

Key Mechanisms and Findings:
Resistance training has emerged as a core modality in neurorehabilitation for aging individuals with MS. Beyond improvements in muscle strength, it enhances neuromuscular coordination, balance, and reduces fatigue. From a neurobiological standpoint, resistance training may stimulate dopaminergic, serotonergic, and noradrenergic systems, thereby contributing to mood regulation and cognitive function. Additionally, it promotes neuroplasticity and neurogenesis in brain areas such as the hippocampus and motor cortex. Myokine release (e.g., IL-6, BDNF, irisin) from skeletal muscle during resistance exercise facilitates muscle-brain crosstalk and may modulate MS-related neuroinflammation. Furthermore, anabolic hormone responses (e.g., testosterone, GH, IGF-1) support muscular and neural tissue repair.

Optimal resistance training for this population includes 2–3 sessions per week on non-consecutive days, starting with low to moderate intensity (40–60% 1RM) and progressing up to 60–80% 1RM, 1–3 sets of 8–12 repetitions per major muscle group.

Aerobic training, meanwhile, offers both peripheral and central benefits. Physiologically, it improves cardiovascular fitness and muscular endurance. Neurologically, aerobic exercise has been shown to elevate levels of neurotransmitters, enhance brain connectivity (particularly interhemispheric and attentional networks), and increase cerebral blood flow. These adaptations are thought to underlie observed improvements in motor function, cognitive performance, and emotional well-being. Functional brain imaging supports these effects, showing increased connectivity in regions related to attention, memory, and motor control after aerobic exercise interventions. Effective aerobic regimens typically involve 20–40 minutes of moderate-intensity activity (40–60% HRR or Borg scale 11–13) such as walking, cycling, or aquatic exercise, performed 2–3 times per week.

Combined training, integrating both aerobic and resistance modalities, is increasingly recognized for its multifaceted impact. This approach targets both central and peripheral limitations caused by MS and aging. Aerobic components facilitate cardiovascular and neuroplastic improvements, while resistance components strengthen muscular function and postural control. When prescribed correctly, combined training is feasible and safe in older adults with MS. Recommended protocols include 15–30 minutes of moderate aerobic activity alongside 1–3 sets of resistance exercises targeting major muscle groups, 2–3 times per week. Program individualization, professional supervision, and gradual progression are critical for accommodating disease heterogeneity, fatigue levels, and physical limitations.

Gaps and Research Directions:
Despite promising evidence, several critical gaps remain. Firstly, most exercise studies in MS have focused on younger adults, with limited data available specifically for older populations. Secondly, optimal exercise dosage (frequency, intensity, duration) and long-term effects, particularly of combined training protocols, remain unclear. Third, neurobiological mechanisms—especially those related to systemic inflammation, myokine signaling, and neuroplasticity—are underexplored in this subgroup. Moreover, adherence and sustainability of exercise interventions in older adults with MS are poorly studied, despite being key to long-term functional outcomes.

Future research should prioritize randomized controlled trials in aging MS populations, investigate individualized and home-based exercise protocols, and include biomarkers to elucidate underlying mechanisms. Longitudinal studies examining functional independence, fall risk reduction, and quality of life are also warranted.

Conclusion:
Aerobic, resistance, and combined exercise interventions offer substantial benefits for neuromuscular function in older adults with MS through a range of physiological and neurobiological mechanisms. While current evidence supports their implementation as part of comprehensive rehabilitation strategies, more targeted research is required to refine prescriptions and enhance clinical translation. Developing safe, scalable, and tailored exercise programs could play a pivotal role in preserving autonomy and quality of life in this growing clinical population)

Footnotes

Funding: This study received no funding from public, commercial, or non-profit Organizations.

Authors’ contribution: All authors contributed to the design, implementation, and writing of all parts of the present study.

Conflict of interest: The authors declare that there is no conflict.

Acknowledgments: We thank all the researchers who contributed to the writing of this article.

 

  1. Saffar Kohneh Quchan AH, Kordi MR, Mohammadi G, Amiri Raeez R, Choobineh S. Strength training attenuates neuropathic pain by Preventing dendritic Spine dysgenesis through Suppressing Rac1 and inflammation in experimental autoimmune encephalomyelitis. Mult Scler Relat Disord. 2025;93:106192.
  2. Motl RW, Sebastião E, Klaren RE, McAuley E, Stine-Morrow EA, Roberts B. Physical activity and healthy aging with multiple sclerosis: literature review and research directions. US Neurol. 2016;12(1):29-33.
  3. Mamoei S, Hvid LG, Boye Jensen H, Zijdewind I, Stenager E, Dalgas U. Neurophysiological impairments in multiple sclerosis—Central and peripheral motor pathways. Acta Neurologica Scandinavica. 2020;142(5):401-17.
  4. Lassmann H. Pathology and disease mechanisms in different stages of multiple sclerosis. Journal of the neurological sciences. 2013;333(1-2):1-4.
  5. Borzuola R, Giombini A, Torre G, Campi S, Albo E, Bravi M, et al. Central and peripheral neuromuscular adaptations to ageing. Journal of clinical medicine. 2020;9(3):741.
  6. Gaemelke T, Jørgensen MK, Riemenschneider M, Dalgas U, Hvid LG. The combined deleterious effects of multiple sclerosis and ageing on neuromuscular function. Exp Gerontol. 2023;184:112339.
  7. Gaemelke T, Pedersen IS, Dalgas U, Hvid LG. Sarcopenia in older people with multiple sclerosis: A cross-sectional study. Multiple Sclerosis and Related Disorders. 2025;93.
  8. Ferrucci L, Fabbri E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol. 2018;15(9):505-22.
  9. DiMauro KA, Swetlik C, Cohen JA. Management of multiple sclerosis in older adults: review of current evidence and future perspectives. Journal of Neurology. 2024;271(7):3794-805.
  10. Rooney S, Riemenschneider M, Dalgas U, Jørgensen MK, Michelsen AS, Brønd JC, Hvid LG. Physical activity is associated with neuromuscular and physical function in patients with multiple sclerosis independent of disease severity. Disabil Rehabil. 2021;43(5):632-9.
  11. DeBolt LS, McCubbin JA. The effects of home-based resistance exercise on balance, power, and mobility in adults with multiple sclerosis11No commercial party having a direct financial interest in the results of the research supporting this article has or will confer a benefit on the author(s) or on any organization with which the author(s) is/are associated. Archives of Physical Medicine and Rehabilitation. 2004;85(2):290-7.
  12. Cano-Sánchez J, Aibar-Almazán A, Hita-Contreras F, Afanador-Restrepo DF, Martínez-Amat A, Achalandabaso-Ochoa A, Carcelén-Fraile MdC. Is resistance training an option to improve functionality and muscle strength in middle-aged people with multiple sclerosis? A systematic review and meta-analysis. Journal of Clinical Medicine. 2024;13(5):1378.
  13. Dalgas U, Stenager E, Jakobsen J, Petersen T, Hansen HJ, Knudsen C, et al. Resistance training improves muscle strength and functional capacity in multiple sclerosis. Neurology. 2009;73(18):1478-84.
  14. Andreasen AK, Stenager E, Dalgas U. The effect of exercise therapy on fatigue in multiple sclerosis. Mult Scler. 2011;17(9):1041-54.
  15. Heine M, van de Port I, Rietberg MB, van Wegen EE, Kwakkel G. Exercise therapy for fatigue in multiple sclerosis. Cochrane Database Syst Rev. 2015;2015(9):Cd009956.
  16. White LJ, McCoy SC, Castellano V, Gutierrez G, Stevens JE, Walter GA, Vandenborne K. Resistance training improves strength and functional capacity in persons with multiple sclerosis. Mult Scler. 2004;10(6):668-74.
  17. Kjølhede T, Vissing K, de Place L, Pedersen BG, Ringgaard S, Stenager E, et al. Neuromuscular adaptations to long-term progressive resistance training translates to improved functional capacity for people with multiple sclerosis and is maintained at follow-up. Multiple Sclerosis Journal. 2015;21(5):599-611.
  18. Petersen AM, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol (1985). 2005;98(4):1154-62.
  19. Sleiman SF, Henry J, Al-Haddad R, El Hayek L, Abou Haidar E, Stringer T, et al. Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate. Elife. 2016;5.
  20. White LJ, Castellano V. Exercise and brain health--implications for multiple sclerosis: Part 1--neuronal growth factors. Sports Med. 2008;38(2):91-100.
  21. Latimer-Cheung AE, Martin Ginis KA, Hicks AL, Motl RW, Pilutti LA, Duggan M, et al. Development of evidence-informed physical activity guidelines for adults with multiple sclerosis. Arch Phys Med Rehabil. 2013;94(9):1829-36.e7.
  22. Dalgas U, Stenager E, Ingemann-Hansen T. Multiple sclerosis and physical exercise: recommendations for the application of resistance-, endurance- and combined training. Mult Scler. 2008;14(1):35-53.
  23. Kjølhede T, Vissing K, Dalgas U. Multiple sclerosis and progressive resistance training: a systematic review. Mult Scler. 2012;18(9):1215-28.
  24. Motl RW, Pilutti LA. The benefits of exercise training in multiple sclerosis. Nat Rev Neurol. 2012;8(9):487-97.
  25. Prakash RS, Snook EM, Motl RW, Kramer AF. Aerobic fitness is associated with gray matter volume and white matter integrity in multiple sclerosis. Brain Res. 2010;1341:41-51.
  26. Sandroff BM, Johnson CL, Motl RW. Exercise training effects on memory and hippocampal viscoelasticity in multiple sclerosis: a novel application of magnetic resonance elastography. Neuroradiology. 2017;59(1):61-7.
  27. Sandroff BM, Pilutti LA, Motl RW. Cardiorespiratory fitness and cognitive processing speed in multiple sclerosis: The possible roles of psychological symptoms. Multiple Sclerosis and Related Disorders. 2019;27:23-9.
  28. Sandroff BM, Hillman CH, Motl RW. Aerobic Fitness Is Associated with Inhibitory Control in Persons with Multiple Sclerosis. Archives of Clinical Neuropsychology. 2015;30(4):329-40.
  29. Wachowski MR, Majos M, Milewska-Jędrzejczak M, Głąbiński A, Majos A. Brain neuroplasticity in multiple sclerosis patients in functional magnetic resonance imaging studies. Part 2: Effect of aerobic training. Pol J Radiol. 2024;89:e328-e35.
  30. Learmonth YC, Adamson BC, Kinnett-Hopkins D, Bohri M, Motl RW. Results of a feasibility randomised controlled study of the guidelines for exercise in multiple sclerosis project. Contemp Clin Trials. 2017;54:84-97.
  31. Flores VA, Šilić P, DuBose NG, Zheng P, Jeng B, Motl RW. Effects of aerobic, resistance, and combined exercise training on health-related quality of life in multiple sclerosis: Systematic review and meta-analysis. Multiple Sclerosis and Related Disorders. 2023;75:104746.
  32. Sangelaji B, Kordi M, Banihashemi F, Nabavi SM, Khodadadeh S, Dastoorpoor M. A combined exercise model for improving muscle strength, balance, walking distance, and motor agility in multiple sclerosis patients: A randomized clinical trial. Iran J Neurol. 2016;15(3):111-20.