تاثیر تصویرسازی حرکتی و مشاهده عمل بر تعادل ایستا و پویای زنان سالمند

نوع مقاله : پژوهشی اصیل

نویسندگان

1 دانشیار گروه رفتار حرکتی- دانشکده علوم ورزشی- دانشگاه تربیت دبیر شهید رجایی- تهران- ایران

2 گروه رفتار حرکتی- دانشکده علوم ورزشی- دانشگاه تربیت دبیر شهید رجایی- تهران- ایران

چکیده

مقدمه: سالمندی با کاهش توانایی حفظ تعادل و افزایش خطر زمین‌خوردگی همراه است. با توجه به محدودیت‌های تمرینات جسمانی سنتی، رویکردهای شناختی–حرکتی مانند تصویرسازی حرکتی و مشاهده عمل به‌عنوان مداخلات کم‌خطر برای بهبود تعادل سالمندان مطرح شده‌اند. پژوهش حاضر با هدف تعیین تاثیر تصویرسازی حرکتی و مشاهده عمل بر تعادل ایستا و پویای زنان سالمند انجام شد.
روش پژوهش: این مطالعه نیمه‌تجربی با طرح پیش‌آزمون–پس‌آزمون با گروه کنترل بر روی ۳۰ زن سالمند دارای سلامت شناختی اجرا شد. شرکت‌کنندگان به‌صورت تصادفی در سه گروه تصویرسازی حرکتی (تصویرسازی تکالیف تعادلی ساده شامل ایستادن به‌مدت ۲ ثانیه در نقطه شروع، راه رفتن در مسیر ۳ متری همراه با عبور از سه مانع، و بازگشت به نقطه شروع)، مشاهده عمل (مشاهده ویدئوی اجرای تکالیف تعادلی) و گروه کنترل، (انجام فعالیت‌های روزمره معمول) قرار گرفتند. هر گروه به مدت سه جلسه متوالی در مداخلات مربوطه شرکت کرد. تعادل ایستا و تعادل پویا با آزمون رومبرگ و  زمان برخاستن و رفتن (TUG) اندازه‌گیری گردید.
یافته‌ها: نتایج آزمون تحلیل واریانس مرکب نشان داد در تعادل ایستا، اثر اصلی گروه و مراحل آزمون و همچنین تعامل گروه و مراحل آزمون معنادار است، هر دو گروه تصویرسازی حرکتی و مشاهده عمل در پس‌آزمون عملکرد بهتری نسبت به گروه کنترل داشتند، اما تفاوتی بین دو گروه آزمایشی مشاهده نشد، همچنین تعادل ایستا در گروه تصویرسازی پیشرفت معناداری را در پس آزمون نشان داد.
نتیجه‌گیری: تمرینات شبیه‌سازی حرکتی  می‌توانند موجب بهبود معنادار در تعادل ایستای سالمندان شوند و به عنوان مداخلات ایمن، ساده و کم‌هزینه در برنامه‌های توانبخشی توصیه می‌شوند.

کلیدواژه‌ها

موضوعات


Introduction
Aging is a complex biological, psychological, and social process accompanied by gradual structural and functional changes in multiple body systems, becoming prominent around the sixth decade of life. One of the critical changes in older adults is the decline in static and dynamic balance, largely due to deteriorations in sensory–motor systems, including visual, vestibular, and proprioceptive functions. Balance impairments not only reduce quality of life but also increase the risk of falls and secondary consequences, such as fractures and disability, imposing significant social and economic burdens on families and healthcare systems. Studies indicate that a substantial proportion of adults over 65, experience at least one fall annually, with many exhibiting varying degrees of balance dysfunction. In Iran, the proportion of older adults is projected to exceed 20% by 2050, highlighting the need for interventions that improve balance performance.

Although traditional physical exercises are effective in rehabilitation, limitations such as pain, physical weakness, and restricted access can hinder regular and safe participation. In this context, cognitive–motor approaches, such as Motor Imagery (MI) and Action Observation (AO), have emerged as low-risk, accessible strategies to enhance balance in older adults. MI involves mentally simulating movements, while AO focuses on observing movements performed by others. From a neurocognitive perspective, both approaches activate motor cortical areas, mirror neuron networks, and movement planning circuits, enabling motor learning and re-education without imposing significant physical load. Previous research has shown that MI and AO can improve static balance and functional mobility in older adults; however, comparative evidence on their specific effects remains limited. Therefore, the present study aimed to investigate and compare the effects of MI, AO, and traditional physical exercise on static and dynamic balance in elderly women.

Methods
This quasi-experimental study employed a pretest–posttest design with three groups (MI, AO, and control) involving 30 healthy older women with Mini-Mental State Examination (MMSE) scores ≥24. Participants were randomly assigned to groups, matched for imagery ability (R-MIQ) and cognitive status. Interventions were conducted over 18 sessions across six weeks with each session lasting approximately 40 minutes (20 minutes of main exercise, 10 minutes of rest, 10 minutes of exercise review).

Participants were randomly assigned to one of three groups: motor imagery (imagining simple balance tasks including standing for 2 seconds at the starting point, walking a 3-meter path while stepping over three obstacles, and returning to the starting point), action observation (observing video demonstrations of the same exercises), and control (engaging in their usual daily activities). Static balance was assessed using the Romberg test, and dynamic balance was measured with the Timed Up and Go (TUG) test. Romberg testing involved barefoot standing with eyes closed, recording the duration of maintained balance, whereas TUG measured the time required to stand, walk, turn, and return to a chair. Data were analyzed using SPSS v.23. Normality and homogeneity of variance were assessed using the Shapiro–Wilk and Levene tests, respectively. Main analyses included mixed ANOVA and Bonferroni post-hoc comparisons.

Results
For static balance, significant main effects of group and test and a group and time interaction were observed (P<0.05). Pre-intervention, no significant differences existed between groups. Post-intervention, both MI (P=0.031) and AO (P=0.036) groups showed significantly better performance than the control group, with no significant difference between MI and AO (P=1.0). Only the MI group demonstrated a significant within-group improvement from pre- to post-test (P=0.001), whereas AO and control groups did not. These findings indicate that motor simulation techniques positively affect static balance, with motor imagery having a particularly notable impact on postural stability in older adults.

For dynamic balance, only the main effect of time was significant (P<0.01), suggesting that all participants improved from pre- to post-test regardless of group. There were no significant main effects of group or group and time interaction, indicating that MI and AO alone were insufficient to significantly enhance dynamic balance. These results align with previous studies showing that dynamic balance relies on the integration of multiple sensory–motor and cognitive systems, and purely cognitive interventions have limited effects.

Conclusion
This study demonstrated that motor simulation interventions, particularly MI and AO, can meaningfully improve static balance in older adults and may serve as safe, cost-effective, and accessible strategies in rehabilitation programs. However, enhancing dynamic balance likely requires combining these methods with physical or task-specific exercises. MI may produce longer-lasting effects than AO by actively engaging proprioceptive feedback and neural circuits involved in postural control. These findings support incorporating MI and AO as complementary interventions in elderly rehabilitation programs to reduce fall risk and improve quality of life.

Future research should examine longer interventions (8–12 weeks) using combined AO+MI protocols with real-world functional exercises and employ precise measurement tools, such as gait analysis systems and force platforms. Developing standardized instructional videos and apps could facilitate home-based mental and observational practice, increasing adherence and motivation among older adults.

Footnotes

Acknowledgments
We sincerely appreciate all those who assisted us in conducting this research.

Conflict of Interest
The authors declare no conflicts of interest.

Authors' Contributions

The authors have made equal contributions in the design, implementation, and writing of various sections of the research.

Ethical Approval
This study was conducted in accordance with established research guidelines and adhered to all ethical principles. The experimental protocols were approved by the Review Board of the Graduate Studies Office at Shahid Rajaee Teacher Training University.

 

  1. Wang J, Li Y, Yang G-Y, Jin K. Age-related dysfunction in balance: a comprehensive review of causes, consequences, and interventions. Aging and disease. 2024;16(2):714.
  2. Seidler RD, Bernard JA, Burutolu TB, Fling BW, Gordon MT, Gwin JT, et al. Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neuroscience & Biobehavioral Reviews. 2010;34(5):721-33.
  3. Caristia S, Campani D, Cannici C, Frontera E, Giarda G, Pisterzi S, et al. Physical exercise and fall prevention: A systematic review and meta-analysis of experimental studies included in Cochrane reviews. Geriatric nursing. 2021;42(6):1275-86.
  4. Lesinski M, Hortobágyi T, Muehlbauer T, Gollhofer A, Granacher U. Effects of balance training on balance performance in healthy older adults: a systematic review and meta-analysis. Sports medicine. 2015;45(12):1721-38.
  5. Pahlevanian AA, Najarian R, Adabi S, Mirshoja MS. The prevalence of fall and related factors in Iranian elderly: A systematic review. Archives of Rehabilitation. 2020;21(3):286-303.
  6. Tavan H, Azadi A. The frequency of fall, fear of fall and its related factors among Iranian elderly: A systematic review and meta-analysis. International Journal of Africa Nursing Sciences. 2024;20:100660.
  7. Khalagi K, Hoveidaei AH, AziziKia H, Karimi A, Sattarpour R, Fahimfar N, et al. Identifying determinants for falls among Iranian older adults: insights from the Bushehr elderly health program. BMC geriatrics. 2024;24(1):588.
  8. Zhu T-R, Xu H-Q, Wei J-P, Quan H-L, Han X-J, Li T-X, et al. Effectiveness of exercise prescription variables to reduce fall risk among older adults: a meta-analysis. European Review of Aging and Physical Activity. 2025;22(1):7.
  9. Nicholson V, Watts N, Chani Y, Keogh JW. Motor imagery training improves balance and mobility outcomes in older adults: a systematic review. Journal of physiotherapy. 2019;65(4):200-7.
  10. Christakou A, Bouzineki C, Pavlou M, Stranjalis G, Sakellari V. The Effectiveness of Motor Imagery in Balance and Functional Status of Older People with Early-Stage Dementia. Brain Sciences. 2024;14(11):1151.
  11. Gatti R, Sarasso E, Pelachin M, Agosta F, Filippi M, Tettamanti A. Can action observation modulate balance performance in healthy subjects? Archives of Physiotherapy. 2019;9(1):1.
  12. Temporiti F, Galbiati E, Bianchi F, Bianchi AM, Galli M, Gatti R. Early sleep after action observation plus motor imagery improves gait and balance abilities in older adults. Scientific Reports. 2024;14(1):3179.
  13. Martin-Blazquez M, Sosa-Reina MD, Andrade-Granda AM, Sanz-Esteban I, López-Ruiz J, Estrada Barranco C. Impact of action observation therapy on motor and cognitive outcomes in older adults with mild cognitive impairment: a randomized controlled study. Frontiers in Public Health. 2025;13:1518092.
  14. O’Shea H, Moran A. Does motor simulation theory explain the cognitive mechanisms underlying motor imagery? A critical review. Frontiers in Human Neuroscience. 2017;11:72.
  15. Jeannerod M. Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage. 2001;14(1):S103-S9.
  16. Rizzolatti G, Sinigaglia C. The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nature reviews neuroscience. 2010;11(4):264-74.
  17. Eaves DL, Riach M, Holmes PS, Wright DJ. Motor imagery during action observation: a brief review of evidence, theory and future research opportunities. Frontiers in neuroscience. 2016;10:514.
  18. Zhang M, Zhang T, He Y, Luo J. Comparison of motor imagery and action observation on lower limb function in older adults: a systematic review and meta-analysis. Geriatric Nursing. 2025;65:103468.
  19. Oh DS, Choi JD. Effects of motor imagery training on balance and gait in older adults: a randomized controlled pilot study. International journal of environmental research and public health. 2021;18(2):650.
  20. Hatami F, Samadi H, Salari JM. The Effect of Motor Imagery and Action Observation on Balance, Gait Length, Speed and Rhythm in Elderly Post Stroke. 2020.
  21. T BEZERRA P, Santiago LM, Silva IA, Souza AA, Pegado CL, Damascena CM, et al. Action observation and motor imagery have no effect on balance and freezing of gait in Parkinson’s disease: a randomized controlled trial. European journal of physical and rehabilitation medicine. 2022;58(5):715.
  22. Pettenuzzo TSdA, Estivalet KM, Cabeleira MEP, Lahude AB, Righi NC, Mendes LdO, et al. Updates on Motor Imagery and Action Observation in Parkinson's Disease Motor Rehabilitation: A Systematic Review and Meta-analysis. NeuroRehabilitation. 2025;56(4):438-50.
  23. Romberg MH. A manual of the nervous diseases of man: Sydenham Society; 1853.
  24. Sadegi H, NOUROUZI H, KARIMI AA, MONTAZER M. FUNCTIONAL TRAINING PROGRAM EFFECT ON STATIC AND DYNAMIC BALANCE IN MALE ABLE-BODIED ELDERLY. 2008.
  25. Podsiadlo D, Richardson S. The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. Journal of the American geriatrics Society. 1991;39(2):142-8.
  26. IRANAGH JA. EFFECTIVENESS OF HEALTH EDUCATION INTERVENTION BASED ON HEALTH BELIEF MODEL AMONG ELDERLY WOMEN IN URMIA, IRAN. 2015.
  27. Aslankhani MA, Farsi A, Fathirezaie Z, Zamani Sani SH, Aghdasi MT. Validity and reliability of the timed up and go and the anterior functional reach tests in evaluating fall risk in the elderly. Iranian Journal of Ageing. 2015;10(1):16-25.
  28. Hall CR, Martin KA. Measuring movement imagery abilities: a revision of the movement imagery questionnaire. Journal of mental imagery. 1997.
  29. Sohrabi M, Farsi A, Fuladian J. Validation of the Iranian translation of the movement imagery questionnaire-revised. 2010. persian.
  30. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research. 1975;12(3):189-98.
  31. Seyedian M, Fallah M, Norouzian M, Nejat S, Delavar A, Ghasemzadeh H. Validity of the farsi version of mini-mental state examination. 2007.
  32. Horak FB. Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls? Age and ageing. 2006;35(suppl_2):ii7-ii11.