تأثیر تمرینات تعادلی با محرک عصبی-بصری همراه با وظایف شناختی بر تعادل پویا، ترس از افتادن، کیفیت زندگی و عملکرد سالمندان

نوع مقاله : پژوهشی اصیل

نویسندگان

1 1. استاد دانشگاه خوارزمی دانشگاه تهران، ایران.

2 2. گروه بیومکانیک و آسیب شناسی ورزشی، دانشگاه خوارمی، تهران، ایران.

چکیده

مقدمه:پیری با تغییرات حسی-حرکتی و شناختی همراه است که منجر به اختلال تعادل، افزایش خطر سقوط، ترس از سقوط و کاهش کیفیت زندگی در سالمندان می‌شود. مطالعه حاضر اثربخشی تمرینات تعادلی با محرک عصبی-بصری همراه با وظایف شناختی بر تعادل داینامیک، ترس از سقوط، کیفیت زندگی و عملکرد در سالمندان را بررسی کرد.

روش پژوهش: این پژوهش نیمه تجربی با طرح پیش‌آزمون-پس‌آزمون و گروه کنترل بر روی ۴۵ سالمند اجرا شد. شرکت‌کنندگان به صورت مساوی به سه گروه الف- تمرینات تعادلی با عینک استروبوسکوپ و وظایف شناختی، ب- تمرین تعادلی با عینک استروبوسکوپ بدون وظایف شناختی و ج- کنترل تقسیم شدند. مداخله شامل ۳ جلسه در هفته طی ۶ هفته بود. تعادل داینامیک با آزمون برخاستن و رفتن زمان‌دار، ترس از سقوط با مقیاس بین‌المللی کارایی در جلوگیری از سقوط، کیفیت زندگی با پرسشنامه کیفیت زندگی سازمان جهانی بهداشت برای سالمندان و عملکرد با آزمون دسترسی عملکرد ارزیابی شد. داده‌ها با تحلیل واریانس آمیخته و آزمون‌های تعقیبی تحلیل گردید.

یافته ها: گروه مداخله با وظایف شناختی بهبود معناداری در تعادل داینامیک، کاهش ترس از سقوط، افزایش کیفیت زندگی و بهبود عملکرد نشان داد (05/0>p). این تغییرات نسبت به گروه تمرین تعادلی ساده و کنترل برتری داشت (اندازه اثر: ۰.۲۵-۰.۳۸؛ متوسط تا قوی). تفاوت‌های بین‌گروهی و درون‌گروهی معنادار بود (05/0>p).

نتیجه گیری: ترکیب وظایف شناختی با تمرینات تعادلی با عینک استروبوسکوپ اثربخشی بالاتری در بهبود تعادل، کاهش ترس از سقوط، ارتقای کیفیت زندگی و عملکرد سالمندان دارد. این رویکرد نوین می‌تواند در برنامه‌های توانبخشی برای پیشگیری از سقوط کاربرد داشته باشد.

کلیدواژه‌ها

موضوعات


Introduction

Aging is a multifaceted process characterized by physiological changes profoundly impacting sensory-motor and cognitive systems in older adults. These alterations manifest as balance impairments, heightened fall risk, and secondary consequences like fear of falling and diminished quality of life (QoL). Falls pose a major public health issue for those aged 65+, with one-third experiencing at least one annually, escalating with age. Psychologically, falls trigger fear of falling—a persistent dread leading to activity restrictions, mobility decline, isolation, and functional deterioration.

Balance relies on multisensory integration of visual, vestibular, and proprioceptive inputs. In older adults, age-related declines disrupt this: visual acuity and peripheral vision weaken, contrast sensitivity drops, limiting compensatory roles; vestibular hair cell loss and otolith atrophy impair head movement and orientation; proprioceptive mechanoreceptor reductions erode body awareness and perturbation responses (9, 10). These sensory issues compound with musculoskeletal changes—lower extremity weakness, joint stiffness, delayed reactions—worsening postural sway and dynamic instability (11, 12).

Executive cognitive functions (divided attention, working memory, flexibility, processing speed) are crucial for balance, particularly in dual-task real-life scenarios. Aging-related cognitive decline overloads attentional resources during locomotion, increasing fall risk. Modern rehabilitation integrates physical exercises with sensory-cognitive stimuli to leverage neuroplasticity. Stroboscopic glasses intermittently occlude vision (e.g., 0.5-second cycles at 1 Hz), inducing perturbations that promote non-visual reliance and sensory reweighting, enhancing postural adaptability. Dual-task training pairs motor and cognitive demands, simulating real-life scenarios to boost balance, reduce fall risk, and ease fear of falling (13, 15).

Though traditional balance exercises, athlete-focused stroboscopic training, and standalone dual-tasks show benefits, few examine their combination in older adults, often overlooking holistic outcomes like fear of falling and QoL. This RCT fills this void by assessing stroboscopic balance training plus cognitive tasks on dynamic balance, fear of falling, QoL, and functional performance in community-dwelling adults aged 60-75. The hypothesis anticipates superior gains in the combined group versus stroboscopic alone or controls.

 

Methods

This quasi-experimental study employed a pretest-posttest design with a control group. The population included community-dwelling older adults in Karaj, Iran, aged 60-75 years. Inclusion criteria: independent ambulation without assistive devices, no severe neuromuscular/musculoskeletal disorders, no lower-limb surgery in the prior six months, and no balance-affecting medications. Exclusion: acute injuries/illnesses during intervention, >3 missed sessions, or consent withdrawal. Sample size: 45 participants (15/group), based on prior studies, with 80% power, α=0.05, and 20% attrition.

Following informed consent, participants were conveniently assigned to three groups: (1) stroboscopic balance training with cognitive tasks (ST+CT), (2) stroboscopic balance training without cognitive tasks (ST), and (3) control (no intervention). Baseline demographics were homogeneous (no differences in age, height, weight, BMI; Table 1).

Pre- and post-intervention assessments included: dynamic balance via Timed Up and Go (TUG) test (chair rise, 3-m walk/return/sit; mean of two trials); fear of falling via 16-item Falls Efficacy Scale-International (FES-I; 4-point Likert, 16-64 scores; higher=greater fear); QoL via 24-item WHOQOL-OLD (six domains: sensory abilities, autonomy, social participation, death attitudes, intimacy, prospects; 5-point Likert; higher=better); functional performance via Functional Reach (FR) test (max forward reach without foot shift; higher=better stability) .

ST+CT and ST followed Chen et al.'s (2025) protocol: barefoot on wooden stabilometer (≤20° tilt), 45-s trials (thrice per condition: full vs. stroboscopic vision at 1 Hz, 50% feedback reduction), 3-min rests; thrice weekly for 6 weeks (18 sessions), randomized order to reduce fatigue. ST+CT added cognitive tasks: arithmetic (serial subtractions), working memory (recall 5-7 items), verbal fluency (category naming), selective attention (Stroop-like), decision-making (date calculations); progressive difficulty, rotated for engagement .

Analysis used SPSS v27 (α=0.05). Shapiro-Wilk verified normality; Levene's, homogeneity; parametric tests otherwise. Mixed ANOVA tested time (pre/post) × group interactions, Tukey post-hoc for significance, paired t-tests for within-group changes. Partial eta-squared (η²_p) effect sizes followed Cohen (0.01 small, 0.06 medium, 0.14 large).

 

Results

Demographics showed no baseline intergroup differences (p>0.05). Mixed ANOVA revealed significant time × group interactions across outcomes (p<0.001).

For dynamic balance, ST+CT reduced TUG time from 13.8 ± 2.9s to 10.7±2.3s (t=8.2, P<0.001; η²p= 0.32), outperforming ST (13.5 ±3.1s to 11.2±2.8s; P = 0.02), and control (13.2±2.8s to 12.9 ±3.0s; P = 0.70). between-group: P <0.001).

Fear of falling decreased in ST+CT (FES-I: 28.5 ±7.2 to 21.3 ±5.3; t=6.5, p<0.001; η²p =0.25), more than ST (27.8 ± 6.9 to 24.6 ± 6.5; P =0.04) and control (28.2 ± 7.5 to 27.9 ± 7.3; P =0.92; between-group: P <0.005).

QoL improved in ST+CT (52.9±8.7 to 61.5±7.8; t=5.9, p<0.02; η²p =0.34), exceeding ST (53.1± 8.1 to 57.2± 5.3; P =0.02) and control (52.8± 8.2 to 52.9± 5.5; P = 0.84; between-group: P <0.001).

Functional performance advanced in ST+CT (FR: 24.8± 5.3cm to 31.2±4.5cm; t= 7.1, P <0.001; η²p= 0.38), surpassing ST (25.2±5.5cm to 28.1±4.4cm; P =0.03) and control (24.5± 5.7cm to 24.6±5.3cm; P= 0.64; between-group: P <0.001).

Overall, ST+CT yielded medium-to-large effects, underscoring cognitive integration's superiority.

 

Conclusion

This study confirms that stroboscopic balance training augmented by cognitive tasks significantly enhances dynamic balance, reduces fear of falling, elevates QoL, and bolsters functional performance in older adults, outperforming isolated training. These results align with meta-analyses on dual-task interventions, which yield small-to-moderate cognitive gains and medium-to-large motor benefits via neuroplasticity reorganizing neural pathways through concurrent demands .

TUG improvements in ST+CT reflect enhanced postural control and gait efficiency, driven by dual-task attentional allocation, automated motor patterns per dual-process theory, and stroboscopic perturbations strengthening predictive/feedback mechanisms. Fear reduction aligns with Bandura's self-efficacy theory: progressive successes build confidence, disrupting fear-avoidance cycles and modulating amygdala activity via cognitive restructuring.

QoL gains stem from restored autonomy and social engagement under the ICF model, as better balance enables daily activities, alleviating depression and isolation. FR improvements, with the largest effect, highlight real-world transfer by simulating ecological dual-tasks and desirable difficulty in motor learning.

Limitations include short-term follow-up and unmonitored confounders (e.g., daily activity). Future studies should incorporate long-term tracking, neuroimaging (fMRI/EEG), and diverse populations.

Integrating cognitive tasks with stroboscopic training offers a superior, neuroplasticity-driven intervention, enhancing balance, mitigating fall fear, boosting QoL, and optimizing performance. Clinicians should prioritize dual-task protocols in fall prevention to promote independence.

 

Footnotes

Funding: This study received no financial support from governmental centers or institutions.

Authors’ contribution: Study concept and design: A.A, S.S; Analysis and interpretation of data: A.A, S.S; Drafting of the manuscript: A.A; Critical revision of the manuscript for important intellectual content: S.S; Statistical analysis:A.A

Conflict of interest: The authors declare no conflicts of interest.

Acknowledgments: We extend our sincere gratitude to all individuals who assisted us in this endeavor.

 

  1. Horak, F.B., Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls? Age and ageing, 2006. 35(suppl_2): p. ii7-ii11.
  2. Rubenstein, L.Z., Falls in older people: epidemiology, risk factors and strategies for prevention. Age and ageing, 2006. 35(suppl_2): p. ii37-ii41.
  3. Gogol, M., Standards in dementia care. Age and ageing, 2007. 36(5): p. 599-600.
  4. Tinetti, M.E. and C.S. Williams, Falls, injuries due to falls, and the risk of admission to a nursing home. New England journal of medicine, 1997. 337(18): p. 1279-1284.
  5. Masud, T. and R.O. Morris, Epidemiology of falls. Age & Ageing, 2001. 30.
  6. Shumway-Cook, A. and M.H. Woollacott, Motor control: translating research into clinical practice. 2007: Lippincott Williams & Wilkins.
  7. Lord, S.R., Visual risk factors for falls in older people. Age and ageing, 2006. 35(suppl_2): p. ii42-ii45.
  8. Yogev‐Seligmann, G., J.M. Hausdorff, and N. Giladi, The role of executive function and attention in gait. Movement disorders: official journal of the Movement Disorder Society, 2008. 23(3): p. 329-342.
  9. Sherrington, C. and A. Tiedemann, Physiotherapy in the prevention of falls in older people. Journal of physiotherapy, 2015. 61(2): p. 54-60.
  10. Appelbaum, L.G. and G. Erickson, Sports vision training: A review of the state-of-the-art in digital training techniques. International Review of Sport and Exercise Psychology, 2018. 11(1): p. 160-189.
  11. Wilkins, L. and L.G. Appelbaum, An early review of stroboscopic visual training: insights, challenges and accomplishments to guide future studies. International Review of Sport and Exercise Psychology, 2020. 13(1): p. 65-80.
  12. Silsupadol, P., et al., Effects of single-task versus dual-task training on balance performance in older adults: a double-blind, randomized controlled trial. Archives of physical medicine and rehabilitation, 2009. 90(3): p. 381-387.
  13. Kim, K.-M., J.-S. Kim, and D.R. Grooms, Stroboscopic vision to induce sensory reweighting during postural control. Journal of sport rehabilitation, 2017. 26(5).
  14. Pichierri, G., et al., Cognitive and cognitive-motor interventions affecting physical functioning: a systematic review. BMC geriatrics, 2011. 11(1): p. 29.
  15. Morat, M., et al., Effects of stepping exergames under stable versus unstable conditions on balance and strength in healthy community-dwelling older adults: A three-armed randomized controlled trial. Experimental gerontology, 2019. 127: p. 110719.
  16. Howe, T.E., et al., Exercise for improving balance in older people. Cochrane database of systematic reviews, 2011(11).
  17. Mitroff, S.R., et al., Enhancing ice hockey skills through stroboscopic visual training: a pilot study. Athletic Training & Sports Health Care, 2013. 5(6): p. 261-264.
  18. Toulotte, C., et al., Identification of healthy elderly fallers and non-fallers by gait analysis under dual-task conditions. Clinical rehabilitation, 2006. 20(3): p. 269-276.
  19. Yu, X., et al., Combined effect of osteoporosis and poor dynamic balance on the incidence of sarcopenia in elderly Chinese community suburban-dwelling individuals. The Journal of nutrition, health and aging, 2020. 24(1): p. 71-77.
  20. Reis, M., et al., Validity and Reliability of the Self-Administered Timed Up and Go Test in Assessing Fall Risk in Community-Dwelling Older Adults. Geriatrics, 2025. 10(3): p. 62.
  21. Visschedijk, J.H., et al., Reliability and validity of the Falls Efficacy Scale-International after hip fracture in patients aged≥ 65 years. Disability and rehabilitation, 2015. 37(23): p. 2225-2232.
  22. Sapmaz, M. and B. Mujdeci, The effect of fear of falling on balance and dual task performance in the elderly. Experimental gerontology, 2021. 147: p. 111250.
  23. Rezaeipandari, H., et al., Cross-cultural adaptation and psychometric validation of the World Health Organization quality of life-old module (WHOQOL-OLD) for Persian-speaking populations. Health and quality of life outcomes, 2020. 18(1): p. 67.
  24. Durgun, H., N. Turan, and H. Kaya, Relationship between fall behavior and quality of life of elderly individuals. Psychology, Health & Medicine, 2022. 27(6): p. 1366-1372.
  25. Sousa, N. and J. Sampaio, Effects of progressive strength training on the performance of the Functional Reach Test and the Timed Get‐Up‐and‐Go Test in an elderly population from the rural north of Portugal. American Journal of Human Biology, 2005. 17(6): p. 746-751.
  26. Ferreira, S., A. Raimundo, and J. Marmeleira, Test-retest reliability of the functional reach test and the hand grip strength test in older adults using nursing home services. Irish Journal of Medical Science (1971-), 2021. 190(4): p. 1625-1632.
  27. Azhdar, M., et al., The Effect of Balance Training on Cognitive and Occupational Performance of the Elderly. Caspian Journal of Pediatrics, 2022. 24(1).
  28. Chen, Y.-C., et al., Enhancing anticipation control of the posture system in the elderly wearing stroboscopic glasses. Journal of NeuroEngineering and Rehabilitation, 2025. 22(1): p. 104.
  29. Zaemeni Motlagh, M., et al., Comparing the Effects of Dual-Task Training and Rhythmic Movement Training on Executive Functions in older adults with Mild Cognitive Impairment. The Scientific Journal of Rehabilitation Medicine, 2025. 14(1): p. 56-71.
  30. Pengpid, S. and K. Peltzer, Associations of history of intimate partner violence with mental ill-health and lifestyle factors in middle-aged and older men and women in South Africa. Archives of gerontology and geriatrics, 2024. 118: p. 105286.
  31. Khachaturian, Z.S., the ‘aducanumab story’: will the last chapter spell the end of the ‘amyloid hypothesis’ or mark a new beginning? The Journal Of Prevention of Alzheimer's Disease, 2022. 9(2): p. 190-192.
  32. Ben Ezzdine, L., et al., Physical activity and neuroplasticity in neurodegenerative disorders: a comprehensive review of exercise interventions, cognitive training, and AI applications. Frontiers in Neuroscience, 2025. 19: p. 1502417.
  33. Trombini-Souza, F., et al., Effects of two different dual-task training protocols on gait, balance, and cognitive function in community-dwelling older adults: a 24-week randomized controlled trial. PeerJ, 2023. 11: p. e15030.
  34. Schoene, D., et al., A systematic review on the influence of fear of falling on quality of life in older people: is there a role for falls? Clinical interventions in aging, 2019: p. 701-719.
  35. Stefanacci, R.G. and A. Riddle, China-A half billion older adults getting and giving assistance. Geriatric Nursing (New York, NY), 2017. 38(6): p. 591-595.
  36. Kumar, A., et al., Exercise for reducing fear of falling in older people living in the community: Cochrane systematic review and meta-analysis. Age and ageing, 2016. 45(3): p. 345-352.
  37. Halvarsson, A., E. Franzén, and A. Ståhle, Balance training with multi-task exercises improves fall-related self-efficacy, gait, balance performance and physical function in older adults with osteoporosis: a randomized controlled trial. Clinical rehabilitation, 2015. 29(4): p. 365-375.
  38. Fritz, N.E., F.M. Cheek, and D.S. Nichols-Larsen, Motor-cognitive dual-task training in persons with neurologic disorders: a systematic review. Journal of neurologic physical therapy, 2015. 39(3): p. 142-153.
  39. Wollesen, B. and C. Voelcker-Rehage, Training effects on motor–cognitive dual-task performance in older adults: A systematic review. European Review of Aging and Physical Activity, 2014. 11(1): p. 5-24.
  40. Glatt, R.M., et al., The “FitBrain” program: implementing exergaming & dual-task exercise programs in outpatient clinical settings. Frontiers in sports and active living, 2024. 6: p. 1449699.