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ABSTRACT

Introduction: Falls in the elderly are a major public health challenge that leads to severe injuries and loss of
independence. Wearable technologies, especially inertial measurement units (IMUs), provide accurate assessment
of fall risk. This narrative review examines the use of inertial sensors in predicting falls in the elderly and analyzes
the relevant evidence.

Methods: A narrative review was conducted based on a structured search in Scopus and Web of Science (2015-
2025). Inclusion criteria included research studies using IMUs in the elderly (60 years and older). A total of 12
studies were analyzed. Data were extracted using a standard form including study characteristics, demographics,
sensor specifications, assessment protocols, and extracted variables.

Results: IMUs placed in the core regions of the body (lower lumbar vertebrae) provided 76 to 89.4% accuracy in
distinguishing fallers from non-fallers. The Up-and-Go test and stability limits provided better discrimination
when combined with linear and nonlinear indices. Prospective studies (81.6% accuracy) had greater clinical
superiority than internal cross-validation (89.4% accuracy). Monitoring in the real-world environment provided
greater ecological validity.

Conclusion: IMUs, when properly placed and using composite indices, are effective tools for assessing fall risk.
The main limitations include small sample size and lack of standardization. Future solutions include the creation
of a public database and the development of better algorithms.
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Extended Abstract

Introduction

Falls in the elderly population represent a critical public
health challenge with severe consequences including
injuries, loss of independence, and increased mortality.
Falls are the second leading cause of accidental deaths
and affect approximately 40% of elderly individuals in
daily activities. In Canada, falls are the primary cause of
injury in older adults, with 33% of hospitalized cases
transferred to long-term care facilities. Risk factors
encompass intrinsic elements (physiological and
psychological) and extrinsic factors (environmental).
Traditional assessment tools such as the Timed Up and
Go (TUG) test and Berg Balance Scale provide
qualitative fall risk evaluation, whereas wearable sensors
offer quantitative assessment. Inertial measurement units
(IMUs) provide precise measurement of movement
pattern changes and body posture during walking.
Research activity has increased substantially since 2013,
with significant advances in machine learning
applications. Bibliometric analysis identified 221 studies
in this field from 2000-2024, with the Journal of
Neurology and IEEE Transactions publishing the most
articles.

Methods

This narrative review analyzed evidence regarding
inertial sensor applications in elderly fall risk assessment.
A narrative approach was selected due to the
heterogeneous nature of research in this emerging
technology field, enabling deep qualitative analysis of
diverse methodologies.

Structured searches were conducted in Web of Science
and Scopus using keywords: (wearable sensor OR
inertial measurement unit OR IMU OR accelerometer)
AND (fall risk OR fall prediction OR fall detection) AND
elderly. Time frame: 2015-2025; English language.
Inclusion  criteria:  cross-sectional,  case-control,
prospective  cohort, validation, and algorithm
development studies using IMUs in elderly (=60 years)
reporting fall-related outcomes. Exclusion criteria:
review studies, conference abstracts, non-wearable
sensors, populations <60 years, simulations, and animal
studies. Twelve studies met criteria and underwent
detailed analysis.

Data extraction included: study characteristics,
demographics, sensor specifications (type, placement
location, sampling frequency), assessment protocols,
extracted variables (stride length, gait speed, Lyapunov
exponent, entropy), analytical methods, and outcomes
(prediction accuracy, sensitivity/specificity).

Results
Sensor Placement

IMUs positioned in core body regions, particularly lower
lumbar vertebrae (3rd-5th), demonstrated optimal
effectiveness. Wang et al. (2024) achieved 88% area
under receiver operating characteristic curve, the best
discrimination between high and low-risk groups.
Buisseret et al. (2022) achieved 76% accuracy with 4th
lumbar vertebral placement. This location's superiority
stems from high sensitivity to trunk changes and body
stability during position transitions. Liu (2012) achieved
86.7% sensitivity with sternum placement versus 73% for
foot-based sensors (Neira, 2023), due to time-series
analysis independent of step detection, eliminating errors
in shuffling gait patterns common in elderly. However,
Saadeh et al. achieved 98% prediction accuracy with
thigh sensors but had limited generalizability due to small
sample size (20 subjects) and lack of prospective
validation.

Assessment Protocols

The TUG test was used in 7 of 12 studies and revealed
specific deficits when instrument-augmented. Qiu et al.
integrated three assessment domains (TUG, stability
limits test, five-time sit-to-stand) achieving 89.4%
accuracy using Support Vector Machine, substantially
outperforming simpler approaches using only gait speed
analysis (Bautmans: 2011 variance analysis only).
Diverse assessment methods showed significant
differences. Lockhart's 10-meter walk test with
prospective design (6-month follow-up) achieved 81.6%
predictive accuracy with better generalizability than
Neira's 15-minute free walking (73% accuracy, case-
control). Real-world monitoring provided greater
validity: van Schooten et al. (2015) conducted one-week
ambulatory monitoring using logistic regression, while
Handelzalts et al. (2020) identified 18 of 22 trip events
(82%) in daily-life conditions. In contrast, Rivolta et al.
(2019) achieved 89% laboratory accuracy with artificial
neural networks but lacked real-world applicability.

Gait Parameters and Feature Extraction

Linear spatiotemporal gait parameters consistently
discriminated fallers from non-fallers: gait speed in 9 of
12 studies, variability indices in 6 of 12, and step
frequency in 7 of 12. Liu's combined approach using
linear features (step timing) with nonlinear indices
(multiscale entropy and recurrence quantification
analysis) achieved 81.6% prospective accuracy,
outperforming purely linear approaches (Bautmans, van
Schooten). Nonlinear indices demonstrate superior
sensitivity to subtle gait deterioration. Howcroft achieved
84% accuracy using maximum Lyapunov exponent in a



neural network. Qiu achieved 89.4% using frequency-
domain features in Support Vector Machine frameworks.
However, linear variability measures depend on accurate
step detection and fail in shuffling gait patterns.
Frequency-domain features are environment-sensitive, as
Wang demonstrated with superior discrimination in stair
descent versus level walking.

Algorithm Comparison

Ensemble tree methods (Random Forest) and margin-
based methods (Support Vector Machine) provide
optimal balance between accuracy and generalizability.
Rivolta's neural network was trained on Tinetti scores, an
imperfect criterion not fully reflecting real-world fall
occurrence.

Prospective vs. Retrospective Validation

Prospective studies demonstrated superior clinical
prediction validity. Liu's Random Forest algorithm with
6-month prospective follow-up achieved 81.6% accuracy
and proved more clinically reliable than Qiu's Support
Vector Machine (89.4%) based on internal cross-
validation without external testing. Neira's Support
Vector Machine using foot sensors (73% accuracy) was
limited by retrospective case-control design, reducing
predictive power for future falls. Real-world monitoring
advantages are evident: Handelzalts' ecological validity
(82%  sensitivity) versus simplified laboratory
environments demonstrates superior clinical utility,
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though with limitations such as missed events (4 of 22
self-reported trips undetected).

Conclusion

IMUs positioned optimally in core body regions,
particularly lower lumbar spine (3rd-5th vertebrae),
represent effective fall risk assessment tools achieving
76-89.4% accuracy. Combined TUG and stability limit
tests with linear (speed, stride length, variability) and
nonlinear indices (multiscale entropy, Lyapunov
exponent) provide superior discrimination. Machine
learning algorithms including Support Vector Machine
and Random Forest demonstrate higher performance than
decision trees. Prospective studies (Liu: 81.6% over 6
months) show superior validity compared to internal
cross-validation (Qiu: 89.4%), while real-world
monitoring provides greater ecological validity.

Primary limitations include small sample sizes causing
model overfitting, lack of standardization regarding
sensor placement and parameters, and poor data quality
(mostly simulated laboratory falls). Future directions
include: establishing public databases with standardized
protocols, integrating diverse sensors for comprehensive
monitoring, utilizing Internet of Things with
personalized feedback, and developing advanced
analytical methods (deep reinforcement learning,
recurrent neural networks) for detecting dynamic fall risk
patterns in real-world environments.
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